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A short theory of the error process  
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A B S T R A C T   

In spite of endless discussions about uncertainties the debate about errors is less animated. It makes sense to 
define a general error process as a sub-process within any erroneous real world process. This can be done in a top 
down concept by an appropriate model, usable in any practical application with the help of scientific adaptation. 
The following introduction is primarily based on theoretical considerations.   

1. Introduction 

A measurement process is not the only erroneous and uncertain pro-
cess. Unfortunately, errors and uncertainties prosper, overarch and sustain 
anywhere. Well, for such common phenomena a common investigation 
strategy in form of an individual error process and of an individual uncer-
tainty process should be self-evident: Especially so in Metrology, which 
fortunately is based on sound theoretical tools like Signal and System 
Theory, Stochastics and Statistics as well as particular branches of Math-
ematics, like Linear Algebra and Differential Calculus. Nevertheless, in 
spite of such an abstract appearance, the concept of error and uncertain 
structures is a relatively simple topic, if systematically approached. 

The following sections provide a holistic proposal for the model of a 
dedicated, self-contained sub-process, within an erroneous process, 
consequently called error process. In order to avoid the usual mix of error 
and uncertainty issues, only error concerns are taken into detailed ac-
count here. It has to be accepted that the terms error and uncertainty have 
quite a different meaning: Errors are properties of processes, and pro-
cesses are not uncertain. Uncertainties are properties of our knowledge. 
On the other hand, it has to be admitted too that the strategies of un-
certainty modelling and analysis are quite similar to the strategies of 
error modelling and analysis. But, uncertainty modelling and analysis 
presuppose and follow error modelling and analysis as indispensable 
apriority knowledge. Otherwise, uncertainty statements are not compe-
tent to incorporate information about errors, knowable or unknowable. If 
for example random quantities are effective in or on a process, the 
resulting random error quantities [2] have to be explored numerically by 
their actual characteristic values first. Only if there are doubts about these 
values, uncertainty quantities with their values concerning our momen-
tary knowledge (degree of belief, confidence) come into focus. 

The following procedure is configured to such an extent that the 
basic concept of an error process is generally valid and thus largely in-
dependent from applicational demands. It is clear that in modelling 
practice on the one hand many types of quantity models turn up: con-
stant and dependent, continuous and discrete, time and frequency 

conditioned, deterministic and random, monovariate and multivariate. On 
the other hand, processes are diverse as well. They are modelled as linear 
or nonlinear, nondynamic or dynamic, time and frequency dependent, and 
so on. Nevertheless, any top down concept must be independent of such 
particular features, and the chosen concept has to be subsequently 
adaptable, more or less straightforwardly, to individual requests in 
practice. Thus, the following proposal assumes continuous, time 
dependent, deterministic, multivariate quantities together with linear, 
time independent (LTI), stable, multivariate dynamic processes. 

For the description of dynamic processes, including the dynamic 
error and uncertainty sub-processes, the well-known State Description 
(SD) method of Signal and System Theory has been chosen [3,4]. The 
main advantage is the provision of an omnipotent structure of a process 
model. Besides, all inner state quantities of a process model are incor-
porated in this input-state-output structure, in spite of the conventional, 
fragmentary input-output configuration. Moreover, a dynamic process 
model can easily be reduced to a nondynamic process model in steady 
state condition, just by trivial intervention. 

Now to terminology: The situation in Metrology is not satisfactory; 
one still has to choose one’s individual concept. In the following sec-
tions, real world items are called processes, and their active or passive 
instances are called procedures. On the other hand, processes are char-
acterised by real world items, here called quantities and their real in-
terrelations. Now, in addition to this real world domain, we enter the 
related abstract world domain of process models and quantity models. This 
model domain is abstract due to our abstract ideas and imagination: The 
model of a process is not the process, and the model of a quantity is not 
the quantity. We have a duality of a real world and an abstract world, the 
abstract world being the model of the real world. 

Signal and System Theory (SST), in fact a mathematical tool [6], and 
thus effective in the model domain, covers abstract items. Accordingly, 
we call the models of the objective real world items signals and systems. 
These terms are well-known, but arbitrarily used anywhere. The anno-
tation of quantities and processes is adopted for signals and systems. 

Contents lists available at ScienceDirect 

Measurement: Sensors 

journal homepage: www.sciencedirect.com/journal/measurement-sensors 

https://doi.org/10.1016/j.measen.2021.100353    

www.sciencedirect.com/science/journal/26659174
https://www.sciencedirect.com/journal/measurement-sensors
https://doi.org/10.1016/j.measen.2021.100353
https://doi.org/10.1016/j.measen.2021.100353
https://doi.org/10.1016/j.measen.2021.100353
http://creativecommons.org/licenses/by-nc-nd/4.0/


Measurement: Sensors 18 (2021) 100353

2

Signal and System Theory: 

An abstract signal is the model of a real world quantity. 

An abstract system is the model of a real world process. 

Thus, quantities and processes can be represented by mathematical 
expressions and visualized by equivalent Signal Relation Graphs (SRG) [5]. 
Remarkably, in the abstract model domain, systems (models of processes) 
show up “only” as interrelations between selected and defined signals. 

Here, processes are meant to be general, real world processes. Thus a 
measurement process is just one of them. Errors, uncertainties and pa-
rameters are considered quantities and thus need equivalent signals as 
their models. Accept that Signal and System Theory pursue equal con-
cepts for all types of signals and systems, a very welcome situation. 

2. Remarks concerning error processes 

The assumption of a common error process model should be helpful to 
clarify the current stagnant and rather vague error and uncertainty 
discussion [8,9]. First of all, the model of an error process should be 
located within the model of an erroneous, real world process, as soon as 
the existence of error quantities, their causes and interactions are sus-
pected (Fig. 1). Of course, should a process be error-free, which is never 
the case, no error process would bother us. 

The model of the uncertainty process U is not discussed furthermore. 
The main question prevails, what the structure and the parameters of the 
error process model E look like (section 5) and where and how the detected 
error quantities e(t) impact defined quantities of interest (section 7). 

The main model structure of an error process bases on the prominent 
error definition, which always presumes a check of an actual quantity of 
interest against some nominal (reference) quantity by assignment (Fig. 2): 

ey(t) = ye(t) − ynom(t) [{y}]
or to present the additive error

ye(t) = yref (t) + ey(t) [{y}]

However, if no nominal (reference) quantity is available, for whatever 
reason, an error quantity can’t be defined at all. This statement is 
generally used as an argument to even negate the very existence of error 
quantities, although they are mentioned in the GUM [1] as well as in the 
VIM [2]. If a nominal (reference) quantity exists, but only in a vague 
form, a precise error description cannot be developed. It may be esti-
mated at best. This is the situation, which finally leads to an error un-
certainty quantity. The same is true, if on the other side the actual 
quantity cannot be determined exactly, for example by measurement or 
other means. An error still exists. 

This justifies the prevailing duality of error quantities and uncertainty 
quantities und does not foster the exclusivity of uncertainty quantities at all. 

It is essential to first define error quantities in an idealised, hypo-
thetically certain-world setting, in order to develop relevant error model 

structures and error parameter quantities within the model of the error 
process E (Figs. 1 and 6). 

But the analytical and empirical transition to uncertain circumstances 
with the emergence of uncertain error quantities, and therefore of uncer-
tainty quantities, will naturally lead to a more demanding uncertainty 
process U (not treated here), in which the particular numerical values of the 
defined error quantities will be uncertain to some degree (Fig. 1). 

Influences of error quantities may be corrected [1] and the un-
avoidable uncertainty quantity values have to be stated. As a vision, we 
are also allowed to presume that errors from random influence quanti-
ties may be corrected in a certain-world setting and even, at least 
approximately, in an uncertain-world setting. This requires acknowl-
edging the independent existence of random error quantities and uncer-
tainty quantities. 

To give a preliminary résumé: To be realistic, error quantities, 
induced by error processes, are always existent and active, but their 
individual values may be uncertain. Thus, we have to deal with error 
quantities and error uncertainty quantities at the same time. They may be 
multivariate and time dependent. The model of an error process char-
acterises the arising error quantities, and the model of an uncertainty 
process characterises the arising uncertainty quantities. 

In addition: Within the entire (global) model of an erroneous process 
there appear other uncertainty quantities concerning those quantity 
values, which arise outside the error process, and which are uncertain 
due to our insufficient knowledge of them (degree of belief, confidence). 
All these different uncertainty types are combined in order to get a final 
uncertainty vector for the erroneous process. 

Again, this seemingly confusing situation requires a consequent 
definition and distinction of error quantities and uncertainty quantities. 
The following sections consider the error process only. 

3. Basic model of an error-free process 

The multivariate, linear, time independent (LTI) differential state 
equation of (N)th order gives an input-state-output model of an error-free 
dynamic process P (Fig. 3): 
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Fig. 1. Basic model of the erroneous process P, containing the sub-models of 
nominal, error free process N, error process E and uncertainty process U. (G is 
the general transfer function symbol). 

y (t)

e  (t)

y     (t)

B
16

34 y

nom

ey (t)y (t)
+

error quantity

nominal quantity

model of
comparison procedure

erroneous quantity
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Fig. 3. Basic model of an error-free dynamic process P.  
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The mathematical solution of this differential equation (convolution 
integral equation) describes the error-free, transient behaviour (trajec-
tory, transition, orbit, evolution) of the set of (P) output signals y(t), 
which depend continuously on the independent variable time t from t =
t0 onwards, on the stimulating set of (M) input signals u(t) and on the set 
of (N) initial state signals x (0) at time t = to: 

y(t)=C eA(t) x(0) + D u(t) + C
∫ t

t0
eA(t− τ) B u(τ) dτ  

4. Basic model of an erroneous process 

The minimal structure of the model of an erroneous process contains 
input quantities u(t), disturbance quantities v(t), internal state quantities x 
(t), output quantities y(t), and loading quantities z(t) (Fig. 4) with the 
extended set of model equations. 

It is obvious that the disturbance quantities v(t) are external causes 
from the surroundings of process P, liable for the first type of errors, i.e. 
for disturbance error quantities. On the other hand, we have loading 
quantities z(t) acting onto the surroundings of process P. These may in-
fluence preceding processes, so that unwanted alterations of the input 
quantities u(t) may occur, which are liable to the second type of errors, i. 
e. for loading error quantities. The third type of errors, internal error 
quantities, becomes visible as soon as the hitherto unknown structure of 
the internal error process E shows up. Internal errors are for example 
transfer errors, parameter errors, model errors, time dependent errors, 
and so on. 

At present, we assume that the model of error process E is a linear, 

time independent (LTI) multivariate dynamic sub-model, producing time 
dependent error quantities e(t) as linear combinations of those three 

possible error types. 

5. Basic model of an error process 

The postulated error process E within the erroneous process P will 
now be covered in detail. As a generalisation we get the following 
structure (Fig. 5), where the prescribed dynamic, nominal process N may 
be, for example, an electronic active filter with a given transfer function 
to be realised in the frequency or in the time domain respectively. All 
three error types, transfer errors, disturbance errors and loading errors are 

considered. Again, a challenge is the identification of the particular ele-
ments of the parameter matrices. 

6. Error differential equation 

By Linear Fractional Transformation (LFT) we divide the erroneous 
system P into two sub-systems, into the given error-free (nominal) sys-
tem N and the error system E. The error system E reveals the resulting 
error signal vector e(t), here however without considering the influences 
of the disturbing signal vector v(t) and the loading signal vector z(t). For our 
endeavour we have three sets of equations:
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Fig. 4. Basic model of an erroneous dynamic process P, with two input quantity 
vectors and two output quantity vectors. 
ẋ(t) = A x(t) + B u(t) + E v(t)
y(t) = C x(t) + D u(t) + F v(t)
z(t) = G x(t) + H u(t) + J v(t)
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We have already got the numerical values of all elements of the process 
parameter matrices with errors and uncertainties by identification 
(calibration). 

7. Error interconections 

In many fields of science and technology it is assumed that error 
quantities superimpose in parallel connection, as has been shown so far. 
This is not always the case. Signal and System Theory enable three and only 
three connection types of two processes: The series connection, the parallel 
connection, and the feedback connection (Fig. 6), applicable here too. 

We recognise that all three basic structures satisfy the obvious con-
dition that the error-free nominal process N has to persist unchanged, if 
all error quantity influences e(t) of the error process E disappear. 

8. Conclusions 

This is a necessarily short introduction to the important concept of 
error quantities as complement to the concept of uncertainty quantities, 
enlightening the obvious duality of the matter. It is proposed to 
concentrate all error relations and procedures in one error sub-process as 
an integral part of an erroneous process, this in parallel to an (up to now 
missing) uncertainty sub-process. 

It is indicated that the State Description method is capable to 
represent the simplest error situation as well as a rather extensive and 
complex error structure. 

The model of the error process E enables simulations together with 
the model of the nominal process N for further examination, especially 
for comparison with an empirically received data set of the global 
erroneous process P [7]. 

Further details have to be treated in the future, especially the sys-
tematic correction of error quantities (inversion, deconvolution of the 
error process) and the quantitative links to a sound uncertainty process, 
still to be defined. 

Finally, it is crucial to observe that error and uncertainty concepts 
are not limited to applied measurement processes or to the demanding 
measurement tasks of National Metrology Institutes (NMI) only, they are 
generally valid. 
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